The evolution of delayed dispersal in cooperative breeders.
نویسندگان
چکیده
Why do the young of cooperative breeders--species in which more than two individuals help raise offspring at a single nest--delay dispersal and live in groups? Answering this deceptively simple question involves examining the costs and benefits of three alternative strategies: (1) dispersal and attempting to breed, (2) dispersal and floating, and (3) delayed dispersal and helping. If, all other things being equal, the fitness of individuals that delay dispersal is greater than the fitness of individuals that disperse and breed on their own, intrinsic benefits are paramount to the current maintenance of delayed dispersal. Intrinsic benefits are directly due to living with others and may include enhanced foraging efficiency and reduced susceptibility to predation. However, if individuals that disperse and attempt to breed in high-quality habitat achieve the highest fitness, extrinsic constraints on the ability of offspring to obtain such high-quality breeding opportunities force offspring to either delay dispersal or float. The relevant constraint to independent reproduction has frequently been termed habitat saturation. This concept, of itself, fails to explain the evolution of delayed dispersal. Instead, we propose the delayed-dispersal threshold model as a guide for organizing and evaluating the ecological factors potentially responsible for this phenomenon. We identify five parameters critical to the probability of delayed dispersal: relative population density, the fitness differential between early dispersal/breeding and delayed dispersal, the observed or hypothetical fitness of floaters, the distribution of territory quality, and spatiotemporal environmental variability. A key conclusion from the model is that no one factor by itself causes delayed dispersal and cooperative breeding. However, a difference in the dispersal patterns between two closely related species or populations (or between individuals in the same population in different years) may be attributable to one or a small set of factors. Much remains to be done to pinpoint the relative importance of different ecological factors in promoting delayed dispersal. This is underscored by our current inability to explain satisfactorily several patterns including the relative significance of floating, geographic biases in the incidence of cooperative breeding, sexual asymmetries in delayed dispersal, the relationship between delayed dispersal leading to helping behavior and cooperative polygamy, and the rarity of the co-occurrence of helpers and floaters within the same population. Advances in this field remain to be made along several fronts.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Evolution of delayed dispersal and subsequent emergence of helping, with implications for cooperative breeding.
Cooperative breeding occurs when individuals help raise the offspring of others. It is widely accepted that help displayed by cooperative breeders emerged only after individuals' tendency to delay dispersal had become established. We use this idea as a basis for two inclusive-fitness models: one for the evolution of delayed dispersal, and a second for the subsequent emergence of helpful behavio...
متن کاملDelayed dispersal and the costs and benefits of different routes to independent breeding in a cooperatively breeding bird
Why sexually mature individuals stay in groups as nonreproductive subordinates is central to the evolution of sociality and cooperative breeding. To understand such delayed dispersal, its costs and benefits need to be compared with those of permanently leaving to float through the population. However, comprehensive comparisons, especially regarding differences in future breeding opportunities, ...
متن کاملCooperative Breeding and Long-Distance Dispersal: A Test Using Vagrant Records
Cooperative breeding is generally associated with increased philopatry and sedentariness, presumably because short-distance dispersal facilitates the maintenance of kin groups. There are, however, few data on long-distance dispersal in cooperative breeders-the variable likely to be important for genetic diversification and speciation. We tested the hypothesis that cooperative breeders are less ...
متن کاملBreeding system evolution influenced the geographic expansion and diversification of the core Corvoidea (Aves: Passeriformes).
Birds vary greatly in their life-history strategies, including their breeding systems, which range from brood parasitism to a system with multiple nonbreeding helpers at the nest. By far the most common arrangement, however, is where both parents participate in raising the young. The traits associated with parental care have been suggested to affect dispersal propensity and lineage diversificat...
متن کاملDispersal costs set the scene for helping in an atypical avian cooperative breeder.
The ecological constraints hypothesis is suggested to explain the evolution of cooperative breeding in birds. This hypothesis predicts that the scene for cooperative breeding is set when ecological factors constrain offspring from dispersal. This prediction was tested in the atypical cooperative breeding system of the long-tailed tit, Aegithalos caudatus, by comparing the degree of philopatry a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Quarterly review of biology
دوره 67 2 شماره
صفحات -
تاریخ انتشار 1992